Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
For many lawmakers, energy-efficient buildings have been the main focus in large cities across the United States. Buildings consume the largest amount of energy and produce the highest amounts of greenhouse emissions. This is especially true for New York City (NYC)’s public and private buildings, which alone emit more than two-thirds of the city’s total greenhouse emissions. Therefore, improvements in building energy efficiency have become an essential target to reduce the amount of greenhouse gas emissions and fossil fuel consumption. NYC’s buildings’ historical energy consumption data was used in machine learning models to determine their ENERGY STAR scores for time series analysis and future pre- diction. Machine learning models were used to predict future energy use and answer the question of how to incorporate machine learning for effective decision-making to optimize energy usage within the largest buildings in a city. The results show that grouping buildings by property type, rather than by location, provides better predictions for ENERGY STAR scores.more » « less
-
This paper presents a mobile-based solution that integrates 3D vision and voice interaction to assist people who are blind or have low vision to explore and interact with their surroundings. The key components of the system are the two 3D vision modules: the 3D object detection module integrates a deep-learning based 2D object detector with ARKit-based point cloud generation, and an interest direction recognition module integrates hand/finger recognition and ARKit-based 3D direction estimation. The integrated system consists of a voice interface, a task scheduler, and an instruction generator. The voice interface contains a customized user request mapping module that maps the user’s input voice into one of the four primary system operation modes (exploration, search, navigation, and settings adjustment). The task scheduler coordinates with two web services that host the two vision modules to allocate resources for computation based on the user request and network connectivity strength. Finally, the instruction generator computes the corresponding instructions based on the user request and results from the two vision modules. The system is capable of running in real time on mobile devices. We have shown preliminary experimental results on the performance of the voice to user request mapping module and the two vision modules.more » « less
-
This paper proposes an AR-based real-time mobile system for assistive indoor navigation with target segmentation (ARMSAINTS) for both sighted and blind or low-vision (BLV) users to safely explore and navigate in an indoor environment. The solution comprises four major components: graph construction, hybrid modeling, real-time navigation and target segmentation. The system utilizes an automatic graph construction method to generate a graph from a 2D floorplan and the Delaunay triangulation-based localization method to provide precise localization with negligible error. The 3D obstacle detection method integrates the existing capability of AR with a 2D object detector and a semantic target segmentation model to detect and track 3D bounding boxes of obstacles and people to increase BLV safety and understanding when traveling in the indoor environment. The entire system does not require the installation and maintenance of expensive infrastructure, run in real-time on a smartphone, and can easily adapt to environmental changes.more » « less
-
null (Ed.)The iASSIST is an iPhone-based assistive sensor solution for independent and safe travel for people who are blind or visually impaired, or those who simply face challenges in navigating an unfamiliar indoor environment. The solution integrates information of Bluetooth beacons, data connectivity, visual models, and user preferences. Hybrid models of interiors are created in a modeling stage with these multimodal data, collected, and mapped to the floor plan as the modeler walks through the building. Client-server architecture allows scaling to large areas by lazy-loading models according to beacon signals and/or adjacent region proximity. During the navigation stage, a user with the navigation app is localized within the floor plan, using visual, connectivity, and user preference data, along an optimal route to their destination. User interfaces for both modeling and navigation use multimedia channels, including visual, audio, and haptic feedback for targeted users. The design of human subject test experiments is also described, in addition to some preliminary experimental results.more » « less
An official website of the United States government

Full Text Available